
Optical Simulations in LArSoft - Technical Manual

Ben Jones, Massachusetts Institute of Technology

December 12, 2012

Abstract

This note describes the optical monte carlo simulation tools which have been developed within
the LArSoft framework for MicroBooNE, LBNE and other detectors with optical systems. I try to
give a full technical overview of the function of optical physics features in LArSoft and how they
should be used. This note is intended to be used as a reference in conjunction with the LArSoft
code repository, and of use to both users and developers of LArSoft optical simulations.

Contents
1 Introduction 2

1.1 Introduction to the LArSoft Optical Simulations . 2
1.2 A Note on LArSoft Code Structure . 3
1.3 LArSoft Packages with Optical Features . 3

2 Optical Geometry in LArSoft 4
2.1 Optical Components within the GDML Description . 4
2.2 Optical Component Handling in the LArSoft Geometry Service 6
2.3 Voxelization Schemes . 7

3 Optical Data Products 7
3.1 Products in the Simulation package . 8

3.1.1 The sim::OnePhoton class . 8
3.1.2 The sim::SimPhotons class . 8
3.1.3 The sim::SimPhotonsCollection class . 9

3.2 Products in the RawData package . 9
3.2.1 The raw::OpDetPulse class . 9

3.3 Products in the RecoBase package . 9
3.3.1 The recob::OpHit class . 10
3.3.2 The recob::OpFlash class . 10

4 Simulation and Analysis Tools 10
4.1 The LightSource event generator . 10
4.2 The SimPhotonCounter analysis module . 11

5 The Full Optical Simulation in LArG4 12
5.1 Configuring and Running the Full Optical Simulation 13
5.2 Physics List Handling in LArG4 . 13
5.3 The OpticalPhysics Constructor and Associated Physics Processes 15

5.3.1 Scintillation . 16
5.3.2 Cherenkov Light . 17
5.3.3 Rayleigh Scattering . 17

1

5.3.4 Surface Reflection and Absorption . 17
5.3.5 Bulk Absorption . 18

5.4 Custom Material Property Handling . 19
5.5 Sensitive Detectors, SimPhoton Logging and Parallel Worlds 19

6 The Fast Optical Simulation in LArG4 20
6.1 Configuring and Running the Fast Optical Simulation 20
6.2 The Mechanics of the Fast Simulation, and the PhotonPropagation Package 21

6.2.1 The PhotonLibrary Object . 21
6.2.2 The PhotonVisibilityService . 23

6.3 The Library Building Process . 23
6.3.1 Configuring and Running a Library Build Job . 23
6.3.2 Library building with the grid . 24

6.4 The PhotonLibraryAnalyzer Tool . 25

7 Digitization and Basic Reconstruction 26
7.1 Optical Digitization . 26

7.1.1 The OpMCDigi digitization module . 26
7.1.2 The OpDigiProperties Service . 27
7.1.3 The OpDigiAna analysis module . 28

7.2 The Hit Finder Reconstruction Module . 28
7.2.1 The OpHitFinder module . 28
7.2.2 The OpLowIntensityHitFinder module . 29
7.2.3 The OpHitAna analyzer . 30

7.3 Flash Finding . 30
7.3.1 The OpFlashFinder module . 30
7.3.2 The OpFlashAna analyzer . 30

8 Conclusion 30

1 Introduction

1.1 Introduction to the LArSoft Optical Simulations
LArSoft is the software framework which supports the US liquid argon TPC experiments ArgoNeuT,
MicroBooNE and LBNE. The package is designed to be as transportable as possible to other current
and future liquid argon TPC detectors, with minimal effort : specification of a detector geometry and
a small number of detector specific settings is, in the ideal case, all that is required to begin simulation
and reconstruction tasks with a new liquid argon TPC experiment.

Optical simulation involves modeling the light emitted by charged particles moving in argon as it
interacts with the detector and eventually produces detectable signals in optically sensitive elements,
such as photomultiplier tubes. At the time of writing, LArSoft incorporates two methods for simulating
light produced and propagating in the detector.

The “full optical simulation” implements a Geant4 simulation of individual optical photons pro-
duced along the path of charged particle tracks through both scintillation and Cherenkov processes.
These photons are stepped around the detector through rayleigh scatterings, reflections and partial
absorption, in order to produce a realistic detector response to the light source. This simulation has
been carefully implemented and steadily improved over a two year period to ensure that it is efficient,
flexible and adheres to LArSoft and Geant4 coding conventions.

Due to the vast number of photons typically produced in a neutrino physics event, the full optical
simulation can take hours or days per event. The “fast optical simulation” mode was developed to
overcome this problem for routine simulation tasks. This mode utilizes a library of stored visibility

2

data to sample an expected detector response given an isotropic emission of light at some point in
the volume. Since the full details of rayleigh scattering, reflection, absorption, etc were treated when
building the library, this response also incorporates all these effects. The fast simulation typically takes
minutes rather than hours to complete. However, only isotropic scintillation light can be handled in this
way. Cherenkov photons are directional, and so we cannot take advantage of the direction-averaged
properties provided by the fast scintillation library. Methods for dealing with this limitation are
discussed in subsequent sections.

Both simulation modes utilize the same detector geometry specification and produce the same data
products. Therefore, the outputs from the two simulations can be used interchangeably. As well as
the simulation methods themselves, a suite of tools for optical photon analysis and reconstruction have
been implemented in LArSoft, and these are also described in this technical manual.

1.2 A Note on LArSoft Code Structure
Wherever possible, optical tools have been developed to adhere to LArSoft code structuring conven-
tions. More detail about these can be found on the LArSoft wiki pages online. All LArSoft code
is written in C++, and I will assume familiarity with C++ and basic object orientated design. In
this section I briefly describe a few LArSoft principals which will help the uninitiated understand the
structure of optical code.

Code in LArSoft is divided into packages. Each package contains one or more source code files.
Usually, one file contains a description of one class. Every package also has its own C++ namespace,
in which all of the classes defined in that package should live. The namespace name usually maps
to the first few letters of the package name, so for example, code that defines the sim::PhotonVoxels
class can be found the in Simulation package, which exists in the trunk/Simulation directory of the
LArSoft repository. A list of all the packages in LArSoft, and their revision numbers at the time of
writing are given in figure 1. This information may help to alleviate confusion in cases where what I
describe in this note has gone out of date - the developer can look at the changes between the version
here described and the current version to see specifically what changes have been made.

There are several types of classes in LArSoft. I now quickly describe four I will refer to often:
modules, services, helper classes and data products. A module is a self contained piece of code which
can be run as part of a job sequence - for example, an event generator or a reconstruction algorithm.
It usually has a parameter set which is supplied in an fcl file, and there is usually one fcl file containing
the default parameter sets of all modules in a package.

A service is a singleton class which is available globally to all packages in LArSoft, and often
supplies useful information or methods to various packages. An example is the Geometry service,
which allows all LArSoft packages to access information about the detector geometry. Services also
have a parameter set supplied in an fcl file.

A helper class is neither a service nor a module, but is a class which is used by other services or
modules for some particular purpose. The more complicated LArSoft packages, in particular LArG4,
are built from complicated webs of helper classes which are all controlled by one module. This module
may access services from both its own package and other packages.

Data products are any classes which are stored into the event. In LArSoft there is no special data
product base class, but where possible these classes are kept flat and simple, coded in strict accordance
with art framework standards, and the introduction of new data product classes is carefully controlled.
All data products live in a few specific LArSoft packages, which exist solely for the purpose of keeping
a complete catalogue of such classes. These are the RawData, RecoBase, Simulation and AnalysisBase
packages.

1.3 LArSoft Packages with Optical Features
Table 1 lists the LArSoft packages are involved in the implementation of optical simulation and re-
construction. Where the specific files column contains a *, this means that optical detector code is

3

Figure 1: The packages in the LArSoft repository and their revision numbers at the time of writing

implemented extensively throughout the package rather than in a few specific files.

2 Optical Geometry in LArSoft

2.1 Optical Components within the GDML Description
All geometry in LArSoft is specified in the GDML language. For each LArSoft experiment there
exist a set of scripts to build the geometry of the detector in gdml language, according to a set of
prescribed parameters (for example, TPC dimensions, number of wires, etc). At the time of writing,
only MicroBooNE geometry has implemented optical systems, and they are also arranged in the global
gdml file with a series of scripts.

The section of gdml representing optical components for MicroBooNE is generated by the scripts
in the Geometry/gdml/microboone directory, including gen_pmt.fcl, gen_pmtrack.pl. The details of the
geometry of a single PMT assembly are contained in the gen_micropmt.gdml file, and coordinates rep-
resenting the centre and direction of each assembly are supplied in the pmtcoordinates.csv file. After

4

P
ac
ka
ge

(/
su
b
d
ir
)

S
p
ec
ifi
c
F
il
es

F
ea
tu
re
s

R
aw

D
at
a

O
pD

et
P
ul
se

O
pt
ic
al

sy
st
em

ra
w

da
ta

pr
od

uc
t

R
ec
oB

as
e

O
pH

it
,O

pF
la
sh

O
pt
ic
al

re
co
ns
tr
uc
ti
on

da
ta

pr
od

uc
ts

S
im

u
la
ti
on

Si
m
P
ho

to
n,

P
ho

to
nV

ox
el
s

Si
m
ul
at
ed

M
C

tr
ut
h
ph

ot
on

ob
je
ct
s,

ph
ot
on

vo
xe
liz
at
io
n
sc
he

m
e

U
ti
li
ti
es

L
A
rP

ro
pe

rt
ie
s
+

su
pp

or
ti
ng

fil
es

Su
pp

ly
of

ar
go
n
op

ti
ca
lp

ro
pe

rt
ie
s
to

L
A
rS
of
t

E
ve
nt
G
en

er
at
or

L
ig
ht
So

ur
ce

+
su
pp

or
ti
ng

fil
es

O
pt
ic
al

lig
ht

so
ur
ce

ev
en
t
ge
ne

ra
to
r

E
ve
nt
D
is
p
la
y

R
ec
oB

as
eD

ra
w
er

O
pF

la
sh

ev
d
dr
aw

in
g
m
et
ho

d
G
eo
m
et
ry

*
D
et
ai
ls

of
O
pD

et
ge
om

et
ri
ca
lc

on
fig

ur
at
io
n
fo
r
ac
ce
ss

th
ro
ug

h
ge
om

et
ry

se
rv
ic
e

/g
dm

l
*

T
he

gd
m
li
m
pl
em

en
ta
ti
on

of
op

ti
ca
lc

om
po

ne
nt
s
fo
r
sp
ec
ifi
c
de

te
ct
or

ge
om

et
ri
es

L
A
rG

4
*

Im
pl
em

en
ta
ti
on

of
op

ti
ca
ls

im
ul
at
io
ns

P
h
ot
on

P
ro
p
ag
at
io
n

*
Fa

st
si
m

m
et
ho

ds
,p

ho
to
n
lib

ra
ry

to
ol
s

/L
ib
ra
ry
D
at
a

*
O
pt
ic
al

ph
ot
on

lib
ra
ry

da
ta

fil
es

/L
ib
ra
ry
B
ui
ld
T
oo

ls
*

Sc
ri
pt
s
an

d
co
nfi

gs
fo
r
gr
id

su
bm

is
si
on

,l
ib
ra
ry

bu
ild

in
g,

et
c

O
p
ti
ca
lD

et
ec
to
r

*
D
ig
it
iz
at
io
n
an

d
lo
w

le
ve
lr

ec
on

st
ru
ct
io
n
m
et
ho

ds
,a

na
ly
si
s
to
ol
s

T
ab

le
1:

Li
st

of
LA

rS
of
t
pa

ck
ag
es

w
he
re

op
ti
ca
ls

im
ul
at
io
n
an

d
re
co
ns
tr
uc
ti
on

co
de

is
im

pl
em

en
te
d

5

building each gdml fragment in turn, the full geometry can be zipped together into one single gdml
file to be loaded into LArSoft using the generate_gdml.pl script.

The geometry file to use in a LArSoft job is specified as a string to the geo::Geometry service, as
the “GDML” parameter. To enhance performance for large detectors, a second geometry can be built
without any wire placements. This geometry file is used by Geant4 only, where the precise positions of
wires is largely unimportant to the physics of particle stepping. If the parameter “DisableWiresInG4”
is set to true in the geometry service, a geometry with the same file name but “_nowires” appended
before the .gdml file extension will be searched for and passed to Geant4 instead of the default with-
wires geometry. For most accurate optical simulations, and specifically library building jobs, it is
recommended that this mode not be used, as some optical photons are inevitably blocked by the
wireplanes - an effect which is not accounted for if a wire-free simulation geometry is utilized.

Any logical volume in the gdml description with a name containing “volOpDetSensitive” will be
assigned a unique optical detector channel ID, and assumed to represent an optical sensitive detector
element in LArG4 (and elsewhere). This name is hard coded into the Geometry module, and supplied
when required to LArG4, or other modules requiring access to the GDML description, via the function
Geometry :: OpDetGeoName(). If there are multiple placements of this volume, each will be assigned its
own sensitive detector ID.

2.2 Optical Component Handling in the LArSoft Geometry Service
The geo::Geometry service is a store of geometry information and tools accessible by all modules in
LArSoft. The optical detector geometry is accessible through this service, and most modules making
use of optical geometry acquire the information they need about optical detector IDs, orientation and
placement from here. The LArSoft geometry description is hierarchical, with one geometry containing
one or more cryostats, which each contain one or more TPCs. Each cryostat also contains zero or more
OpDets, which each represent a single optical detector unit. This scheme is shown diagrammatically
in figure 2.

Figure 2: Hierarchy of objects in the geo::Geometry service

Just as a single wire in the detector can be referred to either by its channel ID, or by its coordinates
[c,t,p,w] = [cryostat, tpc, plane, wire], an optical detector can be referred to either by its optical channel
ID,running from 0 to N in the order the physical volume was loaded into the LArSoft geometry table, or
by its coordinates [c,o] = [cryostat, optdet]. The functions Geometry :: OpDetCryoToOpChannel(o, c)
and its inverse function Geometry :: OpChannelToCryoOpDet(channel) provide a mapping between
these two schemes. In a detector with only a single cryostat, the optical channel ID will in general be
identical to the opdet number o. However, in the interest of ensuring compatibility of tools with multi-
cryostat geometries, developers are always encouraged to use the conversion methods in Geometry to
supply the OpDet ID in the correct coordinate system for the purpose at hand.

6

The number of OpDets in each cryostat can be queried with the function Geometry :: NOpDet(c).
If c is not specified, the number of OpDets in the first (or only) cryostat is returned.

The geo::OpDetGeo object holds information about each optical detector, and is accessible from
the geo::Geometry service through the chain geo :: Geometry− > Cryostat(c)− > OpDet(o). As well
as containing information about the OpDet’s position and orientation, this class also holds some simple
geometry methods for calculation of distances to points in the detector and solid angle factors. Any
geometrical calculations developed for OpDets which can be of wider use in LArSoft in future can and
should be added to this class.

2.3 Voxelization Schemes
Several LArSoft modules, including the fast optical simulation, require optical voxelization of the active
detector region. A voxel is a cuboidal region of 3D space - analogous with a pixel in 2D. So voxelization
effectively means making a course graining of the detector into individually labeled volume units. The
details of a voxelization scheme for an optical volume are represented by a sim :: PhotonVoxelDef
object. This object provides a map between a unique identifier, VoxelID, and a cuboid in XYZ space.
The spatial limits of the voxelized region and the number of voxels to divide it into in each direction are
supplied through the objects constructor. Helpful geometrical methods for dealing with the voxelized
space are provided in this object and its helper object, sim :: PhotonVoxel. These include methods for
finding the voxel ID a given point lies inside, finding the center and edge coordinates of a particular
voxel, getting the total voxel count, etc. These methods are mostly self explanatory, so please see the
source code for more information.

In order to prevent discrepancies between modules, one global voxelization scheme is provided to
all LArSoft modules through the phot :: PhotonVisibilityService service, which owns a globally
accessible sim::PhotonVoxelDef object. The voxelization parameters are specified in the parameter set
for this service, and can be accessed through the method PhotonVisibilityService :: GetVoxelDef().
This service is also responsible for all interfaces with the PhotonLibrary within LArSoft, and this is
what most of the code in its .cxx file is dedicated to - we will discuss with this aspect later, in section
6.

The parameters relevant to voxel specification in the fcl file are listed in table 2. Note that the
UseCryoBoundary parameter, if set to true, will define the limits of the voxelized space to be the
outer edges of the cryostat, as queried from the Geometry service. In this case, the supplied Max and
Min parameters will be ignored. If UseCryoBoundary is set to false, the voxelized region will use the
boundaries specified. For most purposes, including running the fast optical simulation, voxelization of
the entire detector area is required and so UseCryoBoundary will be set to true. In special cases, for
example if we wanted to voxelize the TPC region only, we could specify its coordinates manually.

Parameter Type Purpose

NX, NY, NZ int The number of voxels in the X, Y and Z directions
XMin, XMax, YMin, YMax, ZMin, ZMax double Boundaries of the custom voxel region

UseCryoBoundary bool Whether to use a custom region (0) or full cryostat (1)

Table 2: Voxelization parameters specified to the PhotonVisibilityService parameter set

3 Optical Data Products
This section briefly describes the data types in LArSoft which store the output of optical simulations.
The methods for producing and filling these objects will be the focus of subsequent sections. According
to LArSoft coding conventions, all data products stored in LArSoft events are held in the Simulation,
RawData, RecoBase and AnaBase packages, and where possible should be simple, “flat” classes with
only basic datatypes.

7

3.1 Products in the Simulation package
The simulation package contains three optical simulation objects representing MC-truth level infor-
mation. They form a hierarchy, with sim::SimPhotonsCollection representing many sim::SimPhotons
objects indexed by optical detector ID, and sim::SimPhotons being a collection of sim::OnePhoton
objects, each representing a single detected photon. This is shown in figure 3.

sim::SimPhotonsCollec/on	

sim::SimPhotons	

sim::OnePhoton	

Std::map
key: PMT ID Vector

4-Position
4-Momentum

Figure 3: Hierarchy of data objects in the Simulation package

3.1.1 The sim::OnePhoton class

This object is the basic data product output by the LArSoft detector monte carlo (LArG4). It rep-
resents one photon which has reached an optical detector element. This “detected” photon may have
been simulated in several ways, and the information content is somewhat dependent upon how it was
produced.

n particular, if the sim::OnePhoton was produced by stepping a real Geant4 photon around the
detector, as in the full optical simulation or cerenkov simulation, the SetInSD flag will be set to true. In
all cases, IntitialPosition gives the production point of the photon. The time data member gives, in the
full simulation, the accurate detection time of the photon. In the fast simulation, however, the precise
optical path taken is unknown, so the time reported is the production time, which inserts an error of
O(10ns) into the detection time measurement. Finally, in the full simulation, Energy gives the photon
energy at production, sampled from the scintillation spectrum provided. In the fast simulation, the
energy of the photon is set to a constant 9.7eV, which is the peak of the argon scintillation spectrum.

The sim::OnePhoton object does not store an optical channel ID, as it is always stored as a part
of a sim::SimPhotons object, which indexes the individual photons per optical channel.

Member Type Meaning Notes

InitialPosition TVector3 (x,y,z) of photon production
Energy double Energy of photon at production
Time double Time of the photon Fastsim: production time. Fullsim: detection time

SetInSD bool Was this photon set in a sensitive detector? 0 for fast sim photons, 1 for G4 stepped photons

Table 3: Data Members of the sim::OnePhoton object

3.1.2 The sim::SimPhotons class

This object represents a collection of photons detected by one optical detector element. It is an
overloaded std::vector<sim::OnePhoton>. This means that it can be used exactly as an STL vector
of single photon objects, with the normal [], push_back() and iterator operations. It has two pieces
of added functionality. First, it stores the optical channel ID, which is the unique ID assigned to each

8

optical channel in the detector geometry. Second, it has overloaded operators for adding together two
sim::SimPhotons objects. This operation corresponds to combining the two vectors into one vector
containing all of the original sim::OnePhoton objects. A vector of sim::SimPhotons objects is stored
in the event by LArG4 at the end of an optical simulation event.

Member Type Meaning Notes

fOpDetChannel int Channel ID for this optical detector
sim::SimPhotons[0...n] sim::OnePhoton One object for each photon detected Get photon count with .size()

Table 4: Data Members of the sim::SimPhotons object

3.1.3 The sim::SimPhotonsCollection class

This object is a helper object which represents all of the photons detected by all of the optical detectors
in the event. It is an overloaded std::map<int, sim::SimPhotons*>, with each SimPhotons object
indexed by its unique optical detector channel ID. In the latest version of LArSoft, this object does
not contain additional particularly useful information beyond a simple collection of sim::SimPhotons
objects, and so is gradually dropping out of the code base - however, the multiple cryostat geometry of
LBNE may require such an object be reinstated. The additional functionality above a standard map
are a string to hold the name of the sensitive detector in which this photon collection was produced, and
overloaded operators for adding together SimPhotonCollections (which combine the photon collections
for each sensitive detector in both objects into a single sim::SimPhotonsCollection object).

3.2 Products in the RawData package
The RawData package contains objects which resemble or are equivalent to data read out from a
detector. There is one optical simulation object in RawData, which may require tweaking or expansion
when we there are real DAQ interfaces.

3.2.1 The raw::OpDetPulse class

This object represents a single waveform as read out from an optical detector. It contains a unique
ID identifying the optical detector in question, and a vector of shorts representing ADC samples. In
order to facilitate suppression of long tails of zeroes in the sample vector, the number of samples is
stored as an unsigned short.

Member Type Meaning

fOpDetChannel unsigned short Channel ID for this optical detector
fSamples unsigned short number of samples in this waveform

fWaveform std::vector<unsigned short> Vector of ADC values

Table 5: Data Members of the raw::OpDetPulse object

3.3 Products in the RecoBase package
The RecoBase package contains “reconstructed” objects. We interpret this to mean only objects which
can be produced through a chain which begins with raw data, rather than requiring MC truth. Optical
reconstruction will be the focus of much work in the future, but at the time of writing this note there
are two simple reconstructed objects in this package.

9

3.3.1 The recob::OpHit class

A recob::OpHit represents a single detected pulse in an optical detector, and may represent many
photoelectrons. The OpHit is a completely “flat” object, merely holding data members but not per-
forming any processing. It stores several pieces of information redundantly (for example, pulse area
and number of PE). Eventually we expect this redundancy to be lifted once more advanced digitization
methods, accounting for system nonlinearities for example, are implemented.

Member Type Meaning

fOpDetChannel int Channel ID for this optical detector
fPeakTime, fPeakTimeError double Time of peak of pulse in ns (+error)

fWidth, fWidthError double Time width of pulse in ns (+error)
fArea, fAreaError double Area of pulse in ns * ADC (+error)

fAmplitude, fAmplitudeError double Amplitude of pulse in ADC counts (+error)
fPE, fPEError double Number of PE in pulse (+error)

Table 6: Data Members of the recob::OpHit object

3.3.2 The recob::OpFlash class

A recob::OpFlash represents an approximately simultaneous pulse of light observed by several optical
detector elements. One OpFlash is assumed to correspond to one distinct interaction or cosmic ray in
the detector, and is the basic unit which is matched to track objects to find their drift time coordinate.

Member Type Meaning

fTime double The time in ns at which the flash occurred

fPEPerPMT std::vector<double> A list of the number of PE seen by each optical detector

fYCenter, fYWidth double Center and width of pulse in the y direction, based on PMT positions

fZCenter, fZWidth double Center and width of pulse in the z direction, based on PMT positions

fWireCenters, fWireWidths std::vector<double> Center and width of pulse in the y direction projected onto wire pitch directions

fOnBeamTime int Flag stating whether pulse is in beam window. 0=no, 1=yes

Table 7: Data Members of the recob::OpFlash object

4 Simulation and Analysis Tools

4.1 The LightSource event generator
This module lives in the EventGenerator package and provides a source of an isotropically pro-
duced Geant4 photons from some area in the detector. There are two modes in which the light-
source can be run, which are illustrated in cartoon form in figure 5 and can be selected between
with the “SourceMode” parameter. All parameters described in this section are supplied in the
EventGenerator/lightsource.fcl file.

SourceMode = 0 specifies file mode, where the light source is placed event by event in locations
specified by an input text file. This mode is useful for scanning the light response for particular regions
of interest - for example, near to light-blocking elements like field cage supports, or to quickly scan a
few representative positions in the TPC volume. To use the light source in file mode, a filename must
be specified via the “SteeringFile” parameter in the modules parameter set. An sample guiding file,
LightSourceSteering.txt is provided in the EventGenerator package, and an excerpt is shown in
figure . The top line of the file is ignored and contains column titles. On subsequent lines, the required

10

format is tab separated values, with one record per line containing {x,y,z,t,dx,dy,dz,dt,p,dp,n}, where
these represent central coordinates of the region {x,y,z,t}, extent of the region about this central value
{dx,dy,dz,dt}, the central momentum of photons {p}, width of the momentum distribution {dp}, and
the number of photons to generate in this region {n}. The file is read one line per event, and when all
have been read, the light source starts again at the beginning of the list.

Figure 4: Excerpt from the sample LightSource steering file, LightSourceSteering.txt

SourceMode = 1 specifies scan mode. A defined region is divided up into voxels, and light is
produced in each voxel one event at a time. The lightsource can be instructed to either use the global
voxelization scheme as supplied by the PhotonVisibilityService (see section 2.3), or with a custom
voxelization by supplying the region size and number of steps in each dimension. To use scan mode,
the user must also supply the central momentum and momentum width of photons to fire, the central
time and time interval in which to generate them.

Given a particular voxelization scheme the generator can be instructed to only step over a limited
range of voxels in the geometry. This feature is particularly useful for grid based jobs, where we may
want to sample a different part of the detector with each instance. The first and last voxel IDs to step
through are defined by the “FirstVoxel” and “LastVoxel” parameters. If LastVoxel is set to -1, the full
range of voxels will be used.

Finally, there are three parameters called PosDist, PDist, TDist which specify how the randomly
drawn positions, times and momenta should be distributed. A value 0 indicates a uniform distribution
over the interval supplied, and a value 1 indicates a gaussian distribution of the specified width and
center.

1	 2	 3	 …	 1	

2	

3	

Figure 5: Cartoon illustrating the two modes of the lightsource event generator. Left: scan mode.
Right: file mode.

4.2 The SimPhotonCounter analysis module
After a monte carlo job has been run, either through the full or fast simulation, any photons which
arrive at a volume designated as a sensitive optical detector are used to produce SimPhoton objects
(section 3.1). The opdet::SimPhotonCounter module is an analyzer which extracts information from these
objects and writes it to TTrees for offline analysis. If required, a wavelength cut and a quantum

11

Tree Name Entries Contents

AllPhotons Per photon Event ID, Wavelength, OpChannel, Time
DetectedPhotons Per photon after QE Event ID, Wavelength, OpChannel, Time

OpDets Per OpDet Event ID, OpChannel, photons at OpDet, photons detected
OpDetEvents Per Event Event ID, total photons at OpDet, total photons detected

Table 8: The four TTrees which can be output by the SimPhotonCounter module

efficiency can be applied, to sample a random subset of the incident photons at the optical detector.
A plot generated with the PerOpDetTree is shown in figure 6

Figure 6: The right shows a plot generated with information from the DetectedPhotons tree of the
SimPhotonCounter module. The number of photoelectrons recorded by each PMT as a function of
time is shown for an event containing a neutrino interaction and cosmic rays. The left image is the 3
wireplane event display of the same event. Note that the optical window is 3 frames long, even though
only one readout frame is shown in the event display. This is necessary since out-of-frame-time cosmic
rays can still be visible in the beam triggered readout frame.

Care must be taken when using the QuantumEfficiency feature, for several reasons. For some
applications quantum efficiency can be set further upstream - for example, by dropping the scintillation
yield in argon by a relevant factor to speed up full simulation computations. In this case, MC truth
photons all represent detected photoelectrons. Conversely, for the fast simulations, quantum efficiency
losses are usually not applied until the digitization stage. In this case MC truth photons represent
photons arriving at a sensitive element, of which some fraction will be detected. This is the more
accurate way to treat the quantum efficiency, as it ensures that Cerenkov photons and scintillation
photons both suffer the same fractional cut, whereas simply dropping the scintillation yield only affects
the latter set.

The analyzer can output up to four TTrees, the contents of which are described in table 8. There
are flags to switch each tree on or off in the modules parameterset. If not interested in per-photon
information, it is advisable to switch off the AllPhotonsTree and DetectedPhotonsTree as in some cases
many photons are detected and this will cause the output file size to explode.

5 The Full Optical Simulation in LArG4
As interdicted in section 1.1, the full optical simulation involves producing and tracking individ-
ual scintillation and cerenkov photons in Geant4. The Geant4 particle representing a photon is the

12

G4OpticalPhoton. Capabilities for enabling this particle and its attached physics processes have been
implemented in LArSoft, as well as methods for handling the detection of such particles. Typical events
involve stepping millions of optical photons, so the full simulation is very computationally intensive.
Wherever possible, effort has been made to push the efficiency of the simulation as hard as possible.
LArSoft’s interface to Geant4 is the module LArG4 and so this package is where the majority of the
relevant code lives.

5.1 Configuring and Running the Full Optical Simulation
The sample fcl file EventGenerator/prodsingle_fulloptical.fcl shows how to configure and run the full
optical simulation.

The parameter sets which control the Geant4 simulation in LArSoft are supplied to two services
which are included in the standard microboone_simulation_services block, listed in table 9. To configure
the full optical simulation, some relevant parameters of these services must be changed from their
default values. We describe these parameters in this section.

Pset name File Purpose

LArG4Parameters Simulation/simulationservices.fcl Control of Geant4 physics list
LArProperties Utilities/larproperties.fcl Control of argon optical parameters

Table 9: Parameter sets which control the optical simulation

The following line

services.user.LArG4Parameters.UseCustomPhysics = true

is used to allow the user to control which items in the Geant4 physics list are switched on and off.
Then, optical processes will be included if the line “Optical” is included in the vector of strings

services.user.LArG4Parameters.EnabledPhysics = [”Em”, ”Optical”, ...

which specifies which physics constructors should be loaded into the simulation. These are the
only two parameters which must be set in LArG4Parameters. The LArProperties service controls the
parameters of the physics processes which are attached to the liquid argon volume, and so there are
significantly more parameters to be set in this service. The settable parameters of the LArProperties
parameter set are listed in table 10.

5.2 Physics List Handling in LArG4
In order to enable user controlled switching between different optical simulation implementations
(including no optical physics enabled), a configurable physics list system was implemented in LArG4.
Within this system, physics processes and particles are divided into (mostly) self contained blocks which
inherit from the Geant4 class G4VPhysicsConstructor. When a G4VPhysicsConstructor is enabled
in the LArSoft physics list, the particles and processes it contains become a part of the simulation.
For an example physics constructor in LArSoft, see larg4::OpticalPhysics.

A list of all compiled G4VPhysicsConstructors is maintained by the CustomPhysicsTable object,
which is a singleton class in the LArG4 package. A G4VPhysicsConstructor is registered with the
table using a CustomPhysicsFactory object. This templated helper object is instantiated in the .cxx
file of the physics constructor, and at runtime time passes the G4VPhysicsConstructors constructor
method with a string to the CustomPhysicsTable. This scheme is illustrated in figure 7.

13

P
ar
am

et
er

T
yp

e
P
u
rp
os
e

R
In
de
xE

ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
re
fr
ac
ti
ve

in
de
x

R
In
de
xS

pe
ct
ru
m

ve
c<

do
ub

le
>

V
al
ue
s
of

re
fr
ac
ti
ve

in
de
x
pe

r
en
er
gy

bi
n

R
ay
le
ig
hE

ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
ra
yl
ei
gh

sc
at
te
ri
ng

co
effi

ci
en
t

R
ay
le
ig
hS

pe
ct
ru
m

ve
c<

do
ub

le
>

R
ay
le
ig
h
sc
at
te
ri
ng

le
ng

th
pe

r
en
er
gy

bi
n
(c
m
)

A
bs
Le

ng
th
E
ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
bu

lk
ab

so
rp
ti
on

sp
ec
tr
um

A
bs
Le

ng
th
Sp

ec
tr
um

ve
c<

do
ub

le
>

A
bs
or
pt
io
n
le
ng

th
pe

r
en
er
gy

bi
n
(c
m
)

R
efl
ec
ti
ve
Su

rf
ac
eE

ne
rg
ie
s

ve
c<

do
ub

le
>

>
E
ne
rg
y
bi
n
lim

it
s
of

th
e
re
fle
ct
io
n
sp
ec
tr
a
(s
am

e
fo
r
al
lm

at
er
ia
ls
)

R
efl
ec
ti
ve
Su

rf
ac
eN

am
es

ve
c<

do
ub

le
>

>
N
am

es
of

re
fle
ct
iv
e
su
rf
ac
es

-
m
us
t
m
at
ch

G
D
M
L
sp
ec
ifi
ca
ti
on

R
efl
ec
ti
ve
Su

rf
ac
eR

efl
ec
ta
nc
es

ve
c<

ve
c<

do
ub

le
>

>
T
ab

le
of

re
fle
ct
an

ce
s,

[[
m
at
er
ia
l1

pe
r
en
er
gy

],
[m

at
er
ia
l2

pe
r
en
er
gy

].
..]

R
efl
ec
ti
ve
Su

rf
ac
eD

iff
us
eF

ra
ct
io
ns

ve
c<

ve
c<

do
ub

le
>

>
T
ab

le
of

di
ffu

se
vs

sp
ec
ul
ar

re
fle
ct
an

ce
fr
ac
ti
on

s,
fo
rm

at
as

ab
ov
e

E
na

bl
eC

er
en
ko
vL

ig
ht

bo
ol

W
he
th
er

to
en
ab

le
C
er
en
ko
v
pr
od

uc
ti
on

as
w
el
la

s
sc
in
ti
lla

ti
on

Fa
st
Sc
in
tE

ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
fa
st

ti
m
e
co
ns
ta
nt

sc
in
ti
lla

ti
on

em
is
si
on

sp
ec
tr
um

(e
V
)

Fa
st
Sc
in
tS
pe

ct
ru
m

ve
c<

do
ub

le
>

In
te
ns
it
ie
s
pe

r
en
er
gy

bi
n
of

fa
st

ti
m
e
co
ns
ta
nt

sc
in
ti
lla

ti
on

Sl
ow

Sc
in
tE

ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
sl
ow

ti
m
e
co
ns
ta
nt

sc
in
ti
lla

ti
on

em
is
si
on

sp
ec
tr
um

(e
V
)

Sl
ow

Sc
in
tS
pe

ct
ru
m

ve
c<

do
ub

le
>

In
te
ns
it
ie
s
pe

r
en
er
gy

bi
n
of

sl
ow

ti
m
e
co
ns
ta
nt

sc
in
ti
lla

ti
on

Sc
in
tR

es
ol
ut
io
nS

ca
le

do
ub

le
In
te
rn
al

pa
ra
m
et
er

fo
r
G
4S

ci
nt
ill
at
io
nP

ro
ce
ss
,n

ot
us
ed

in
LA

rS
of
t
(=

1)
Sc
in
tF
as
tT

im
eC

on
st
an

t
do

ub
le

T
im

e
co
ns
ta
nt

(i
n
ns
)
of

fa
st

sc
in
ti
lla

ti
on

co
m
po

ne
nt

Sc
in
tS
lo
w
T
im

eC
on

st
an

t
do

ub
le

T
im

e
co
ns
ta
nt

(i
n
ns
)
of

sl
ow

sc
in
ti
lla

ti
on

co
m
po

ne
nt

Sc
in
tB

ir
ks
C
on

st
an

t
do

ub
le

B
ir
ks

co
ns
ta
nt

fo
r
sc
in
ti
lla

ti
on

qu
en
ch
in
g

Sc
in
tY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
pe

r
M
eV

Sc
in
tY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y

T
ab

le
10
:
P
ar
am

et
er
s
re
le
va
nt

to
op

ti
ca
lp

hy
si
cs

in
LA

rP
ro
pe

rt
ie
s
se
rv
ic
e

14

Configurable	
PhysicsList	

PhysicsList	
CustomPhysics	

Factory	

CustomPhysics	
Table	

LArG4	
Parameters	

Op=calPhysics	

Te
m
pl
at
ed

	

Pass	 informa=on	
about	 templated	
class	 to	 table	

What	 does	 the	 user	
want	 enabled?	

Available	 physics	 names	
and	 constructors	

Templated	

Typedef	

Fed	 to	 Geant4	

G4VModularPhysicsList	

G4VPhysicsConstructor	

G4StandardEm	

G4VPhysicsConstructor	

Etc…	

G4VPhysics…	

Tem
plat

ed	

Figure 7: Illustration of the relationship between classes involved in LArSoft physics list handling

No code should ever be added to the physics list handling service explicitly, but new physics con-
structors can easily be added at any time by creating a class derived from G4VPhysicsConstructor and
registering it using a CustomPhysicsFactory object in its .cxx file. For an example, see the implemen-
tation of the physics constructor and its corresponding factor object in LArG4/OpticalPhysics.cxx.

The default Geant4 physics constructors do not instinctively register themselves with the LArSoft
physics list. Therefore, they are registered via physics factories which are defined defined in the
CustomPhysicsBuiltIns supporting files.

The TConfigurablePhysicsList class inherits from the Geant4 G4VModularPhysicsList class.
This means it can be populated with physics constructors provided by the CustomPhysicsTable
and fed to Geant4. This process of passing the physics list to Geant4 is handled by the G4Helper
object of nutools, which since the time of coding has been pulled outside of the LArSoft code-
base. However, population of the physics list with the required physics constructors happens in the
TConfigurablePhysicsList, which obtains all the enabled physics constructor from the CustomPhysicsTable
and then registers them using the RegisterPhysicsmethod of its base class, G4VModularPhysicsList.

5.3 The OpticalPhysics Constructor and Associated Physics Processes
An example of a physics constructor is the larg4::OpticalPhysics class. This class contains all
of the processes and particle definitions relevant to the full optical simulation. Each process is
briefly described in the following subsections. The parameters for Geant4 processes are set by the
larg4::MaterialPropertyLoader class, which itself obtains them from the util::LArProperties
service, to be described in more detail in section 5.4. In what follows I will specify parameters by
their names in the LArProperties service, though in some special cases the Geant4 names which these
properties are provided to the geant4 material tables as may be different. An interested user can look
to the material property loader implementation for a mapping.

15

5.3.1 Scintillation

The full optical physics list utilizes the default Geant4 G4Scintillation process. The parameters re-
quired are: “FastScintEnergies”, “FastScintSpectrum”, “SlowScintEnergies”, “SlowScintSpectrum” which
define the shape of the scintillation energy spectrum; “ScintResolutionScale”, a Fano factor like pa-
rameter; “ScintFastTimeConstant”, “ScintSlowTimeConstant”, the time constants of the fast and slow
scintillation light in nanoseconds; “ScintBirksConstant”, a quenching factor for Birks law charge density
quenching; “ScintYield”, the total number of photons per MeV produced; and “ScintYieldRatio”, the
ratio of photons produced with a fast scintillation time constant to those produced with a slow one.

The scintillation spectrum for the fast and slow components is assumed to be identical and is based
on the digitized spectrum from [7], shown in figure 8. The fast and slow time constants and scintillation
yield information are taken from [2] and the references therein, and are given in table 11.

Figure 8: Scintillation spectrum of fast and slow components of noble liquids, from [7]

Scintillation quenching is implemented by the G4EmStaturation process, which is called as a helper
object to G4Scintillation. We use a Birks constant of 0.069 / (cm MeV), which was extracted from
[1]. Scintillation quenching in LArSoft is a topic which has not been exercised or tested at the present
time, and will be the subject of more serious future investigations in order to ensure an accurate model
of the quenching behavior.

The total scintillation yield is often dropped by a factor of the global PMT quantum efficiency,
and then the PMT assembly efficiency set to 1 downstream. This enhances the simulation speed by
preventing the undetected fraction of photons from being stepped.

Note that for the The parameters supplied through the LArProperties for per-particle-type scin-
tillation apply only to the fast optical simulation. For the full optical simulation we use a single
scintillation yield and fast / slow ratio to represent all particles, which is approximately what would
be expected for a MIP. This feature could be extended reasonably straightforwardly in the future.

16

Parameter Value
ScintResolutionScale 1

ScintFastTimeConstant (ns) 6
ScintSlowTimeConstant (ns) 1500

ScintBirksConstant (1/ cm MeV) 0.0179
ScintYield (photons/MeV) 24000*0.03

ScintYieldRatio 0.25

Table 11: Default parameters for the G4Scintillation process

5.3.2 Cherenkov Light

Cerenkov light is produced with the default Geant4 Cerenkov process, G4Cerenkov. The only settable
parameter for Cerenkov light production is the refractive index of the material, which is given as a
spectrum over a set of energy bins. In LArG4 we set the refractive index of argon over the range
visible to standard optical detectors, from around 100 to 700nm. The curve from which this data was
extracted comes from references [8, 3, 9] and is shown in in figure 9.

Figure 9: Refractive index of liquid argon as a function of wavelength

5.3.3 Rayleigh Scattering

The rayleigh scattering length in argon at 128nm is theoretically calculated to be 90cm. LArSoft
contains the calculated rayleigh spectrum over the wavelength range 110-500nm, in order to ensure
correct scattering lengths for Cerenkov as well as scintillation photons. The rayleigh scattering length
as a function of photon energy is taken from [10] (and references therein) and shown in figure 10.

5.3.4 Surface Reflection and Absorption

In LArG4 we use a simplified reflection process relative to the default Geant4 OpBoundaryProcess, due
in part to lack of data for reflectivities at argon / material boundaries. This process is implemented by
the OpBoundaryProcessSimple class, which inherits from the Geant4 class G4VDiscreteProcess and
is registered by the OpticalPhysics physics constructor. This process produces a certain fraction of

17

Figure 10: Calculated rayleigh scattering length in liquid argon, with data overlaid. Plot taken from
[10]

reflected photons at an interface between argon and the specified material, of which some percentage
are reflected specularly (equal angle of incidence to angle of reflection) and the remainder are reflected
diffusely (isotropic reflection from the surface). Both the reflection coefficient and diffuse fraction are
supplied as functions of photon energy in the LArProperties service configuration.

At present only stainless steel reflections are incorporated, using a constant reflection coefficient of
0.25 with 0.5 diffuse fraction. These are the values of the reflection coefficients at 128nm, taken from
[2]. A better model of the energy dependence of this reflectivity, as well as the reflectivity of other
materials in the geometry should be implemented at some point. However, most of the photons we
care about are at 128nm, and most surfaces are black to these - so the precise details of all component
reflectivities should not ultimately be very important.

Table 12: Reflectances at 128nm taken from [2]

5.3.5 Bulk Absorption

There are no natural absorption processes in high purity argon, so the theoretical absorption length
at 128nm is infinite. The best published limit says that the absorption length in pure argon is >20cm
[5]. Experimentally, it is known to be >90cm, from an unpublished ICARUS analysis, which has
its ultimate sensitivity limit at the 128nm rayleigh scattering length of 90cm [4]. Bulk absorption is

18

expected from impurities such as nitrogen, oxygen and water. In MicroBooNE, the oxygen and water
levels will be maintained at ppb levels to prevent a detrimental impact to free electron lifetime, and
at these concentrations we can expect them to contribute no signficant light absorption. Nitrogen,
however, is not monitored, and will be present at several ppm levels. This may be enough to cause
some attenuation of 128nm light over long path lengths. At present we assume the path length to be
long but not infinite, choosing a value of 20m which is flat over all photon wavelengths. We hope to
replace this with measured data taken in Fermilab test stands during spring-summer 2013.

5.4 Custom Material Property Handling
User defined properties relating to the physics of liquid argon are supplied in LArSoft via the LArProp-
erties service. Geant4 physics processes require these parameters to be set in a G4MaterialPropertiesTable
for each volume in its logical volume store. This task is performed by the MaterialPropertyLoader
class, which provides an interface between the LArProperties service and the Geant4 volume store.
The MaterialPropertyLoader reads both wavelength dependent and wavelength independent param-
eters from the LArProperties service and constructs the Geant4 material properties table for argon.
It was coded with an eye to generalizability, and with a small modification it would be easy to also
supplying other material property tables, if necessary.

Once all required material properties have been catalogued in the MaterialPropertyLoader’s inter-
nal data containers, the logical volume store is requested from geant4 and every volume is checked for its
material name. Those matching the required material are assigned the relevant G4MaterialPropertiesTable.
After this has been done, Geant4 physics processes being called can access the parameters they require
by querying the properties of the logical volume in which they are stepping.

5.5 Sensitive Detectors, SimPhoton Logging and Parallel Worlds
The geometry information in the geo::Geometry service is extracted from the detector gdml indepen-
dently from the detector geometry which exists in LArG4. Hence, whilst the Geometry service of
LArSoft calculates the OpDetID <-> gdml volume mapping at the beginning of the job, the LArG4
geometry does not implicitly know which elements are sensitive and what their IDs should be.

The singleton object OpDetLookup is responsible for maintaining a table which maps a named Geant4
physical (placed) volume to an optical detector ID. When a sensitive optical volume is designated in
LArG4, it is registered with this table to find which ID it should have. The matching is based
on the coordinates of the center of the volume element, which should match between LArG4 and
geo::Geometry.

The sensitive detector handling in LArG4 is implemented according to a standard Geant4 design
scheme. Sensitive detector elements are associated with logical volumes in the Geant4 geometry. When
a particle steps in such an element, it triggers the ProcessHits method of the sensitive detector. The
sensitive detector object for optical systems in LArG4 is the OpDetSensitiveDetector object. The
action taken by this object upon detecting a photon is to figure out which element of the optical
system this photon stepped in using the PhysicalVolume information extracted from the g4Step, and
then add a “detected” MCTruth photon object to the singleton OpDetPhotonTable.

There is a subtlety involved in the sensitive detector scheme, in that the photon detectors exist in a
Geant4 parallel world. This prevents particles other than photons from being detected by these objects,
and also allows one to prevent photons from seeing the TPC charge voxels which exist in LArG4, giving
a great increase in simulation speed. Finally, it avoids problems associated with trying to differentiate
between different placements of the same logical volume which have associated sensitive detectors.
The implementation of a parallel world geometry for repeated placements of a similar sensitive logical
volume is a standard Geant4 design pattern, and more information can be found in the Geant4 manual.

The object OpDetReadoutGeometry is a derived class of G4VUserParallelWorld. At the beginning of
the job, LArG4 registers an instance of the readout geometry with G4Helper. This readout geometry
object seeks all appropriately named sensitive elements in the Geant4 geometry, and for each one

19

found, makes a placement of a new logical volume in the parallel world. This logical volume has a
unique name and is associated with the optical sensitive detector object. It is also registered with the
OpDetLookup object, which generates a mapping between the unique volume name and its detector
ID, which is calculated from volume center coordinates extracted from the Geometry service. The
parallel world scheme in LArG4 is illustrated in figure 17.

“Real”	 world	 LArVoxelReadoutGeometry	
(TPC	 simula,on)	

OpDetReadoutGeometry	
(Op,cal	 simula,on)	

OpDetSensi*veDetector	 LArVoxelReadout	

Record	 photon	 detec*on	 	 Record	 energy	 losses	

No	 sensi*ve	 detectors	

-‐  Full	 physical	 geometry	
-‐  Both	 photons	 and	

par*cles	 stepping	

-‐  Voxels	 for	 charge	
deposit	 measurement	

-‐  Photons	 do	 not	 exist	

-‐  Separate	 sensi*ve	
volumes	 per	 PMT	

-‐  Photons	 exist	
-‐  No	 other	 par*cles	 exist	

Figure 11: Cartoon of the parallel geometry scheme in LArG4

In the LArG4/PhysicsList.cxx file, the G4ProcessManager for optical photons is instructed to ensure
that optical photons step in the readout geometry as well as the global geometry. No other particles
have this property. Hence the OpDetSensitiveDetector object will only be activated for optical photons.

The OpDetPhotonTable, which accepts detected photon objects (“sim::OnePhoton”s) from the sensi-
tive detectors is read out at the end of event processing by the LArG4 module. The contents of the
table are stored in the event. This table accumulates detected photons per optical channel for both
full simulation, that is, Geant4 stepped photons, as well as fast simulated library-lookup photons - see
section 6 for more information.

6 The Fast Optical Simulation in LArG4

6.1 Configuring and Running the Fast Optical Simulation
The argon properties relevant for the fast optical simulation have significant overlap with those
relevant to the full optical simulation, and are also supplied by the LArProperties service. The
physics constructor which controls the fast optical simulation is called FastOptical, is defined by
the larg4::FastOpticalPhysics class. An example fcl script configuring and running the fast optical
simulation can be found in EventGenerator/prodsinglefastoptical.fcl.

The FastOpticalPhysics constructor list is very similar to the full optical physics constructor, which
is described in detail in section 5. The primary difference is that the G4Scintillation process is replaced
with a larsoft process, OpFastScintillation. As with G4Scintillation, this process is also called per
step of a charged particle, but instead of generating Geant4 trackable optical photons it samples a likely

20

detected photon response from a pre-built photon library, and adds the relevant detected photons to
the OpFastScintillationTable.

Cerenkov light cannot be simulated with the fast lookup table since it has a directionality in its
production. Therefore, the default Geant4 Cerenkov process can still be enabled in the FastOptical
physics list by setting the parameter EnableCerenkovLight. This results in the stepping of optical
photons, and as such causes a significant increase in computational time. Depending on the task at
hand, the user can decide whether or not Cerenkov emission is likely to make a significant enough
contribution to warrant simulating it photon-by-photon.

Unlike the G4Scintillation process, the OpFastScintillation process can accept a different scintilla-
tion yield per particle type. This feature is enabled if the ScintByParticleType flag in LArProperties
is set to true. At present the allowed particle types are muon, proton, kaon, electron and pion. These
yields and fast/slow ratios are taken from [6] (see figure 8) and [2].

Figure 12: The scintillation yields of different particle types in LAr

6.2 The Mechanics of the Fast Simulation, and the PhotonPropagation
Package

The processes of building and querying the fast simulation library are handled by the PhotonPropa-
gation package. The central object of this package is the PhotonVisibilityService, which provides
other modules with an interface through which to interact with the photon library. The photon library
data itself is stored in a standalone PhotonLibrary object, which has dedicated methods for input and
output of the library to disk in a specified external root file.

6.2.1 The PhotonLibrary Object

The OpFastScintillation process models the production of some number of photons along a particle
step, determined by the particle type and its scintillation yield, as some degree of quenching if Birks
constant is specified. Given the location of this step in the detector, a predictable fraction of these
photons, on average, will arrive at each optical detector. The fast scintillation process looks up this
fraction in the vicinity of the step, and multiplies it by the number of photons produced. This number
is poisson fluctuated to obtain a number of photons detected at each optical detector from this charge
deposit. The shortness of the steps taken by each particle in Geant4 means that in practice this number
is almost always 0 or 1.

The phot::PhotonLibrary object represents the entire table of visibilities (defined as photons de-
tected per photon produced) for each optical detector at each voxel in the detector. As well as providing

21

P
ar
am

et
er

T
yp

e
P
u
rp
os
e

R
In
de
xE

ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
re
fr
ac
ti
ve

in
de
x

R
In
de
xS

pe
ct
ru
m

ve
c<

do
ub

le
>

V
al
ue
s
of

re
fr
ac
ti
ve

in
de
x
pe

r
en
er
gy

bi
n

R
ay
le
ig
hE

ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
ra
yl
ei
gh

sc
at
te
ri
ng

co
effi

ci
en
t

R
ay
le
ig
hS

pe
ct
ru
m

ve
c<

do
ub

le
>

R
ay
le
ig
h
sc
at
te
ri
ng

le
ng

th
pe

r
en
er
gy

bi
n
(c
m
)

A
bs
Le

ng
th
E
ne
rg
ie
s

ve
c<

do
ub

le
>

E
ne
rg
y
bi
n
lim

it
s
of

th
e
bu

lk
ab

so
rp
ti
on

sp
ec
tr
um

A
bs
Le

ng
th
Sp

ec
tr
um

ve
c<

do
ub

le
>

A
bs
or
pt
io
n
le
ng

th
pe

r
en
er
gy

bi
n
(c
m
)

R
efl
ec
ti
ve
Su

rf
ac
eE

ne
rg
ie
s

ve
c<

do
ub

le
>

>
E
ne
rg
y
bi
n
lim

it
s
of

th
e
re
fle
ct
io
n
sp
ec
tr
a
(s
am

e
fo
r
al
lm

at
er
ia
ls
)

R
efl
ec
ti
ve
Su

rf
ac
eN

am
es

ve
c<

do
ub

le
>

>
N
am

es
of

re
fle
ct
iv
e
su
rf
ac
es

-
m
us
t
m
at
ch

G
D
M
L
sp
ec
ifi
ca
ti
on

R
efl
ec
ti
ve
Su

rf
ac
eR

efl
ec
ta
nc
es

ve
c<

ve
c<

do
ub

le
>

>
T
ab

le
of

re
fle
ct
an

ce
s,

[[
m
at
er
ia
l1

pe
r
en
er
gy

],
[m

at
er
ia
l2

pe
r
en
er
gy

].
..]

R
efl
ec
ti
ve
Su

rf
ac
eD

iff
us
eF

ra
ct
io
ns

ve
c<

ve
c<

do
ub

le
>

>
T
ab

le
of

di
ffu

se
vs

sp
ec
ul
ar

re
fle
ct
an

ce
fr
ac
ti
on

s,
fo
rm

at
as

ab
ov
e

E
na

bl
eC

er
en
ko
vL

ig
ht

bo
ol

W
he
th
er

to
en
ab

le
C
er
en
ko
v
pr
od

uc
ti
on

as
w
el
la

s
sc
in
ti
lla

ti
on

Sc
in
tR

es
ol
ut
io
nS

ca
le

do
ub

le
In
te
rn
al

pa
ra
m
et
er

fo
r
G
4S

ci
nt
ill
at
io
nP

ro
ce
ss
,n

ot
us
ed

in
LA

rS
of
t
(=

1)
Sc
in
tF
as
tT

im
eC

on
st
an

t
do

ub
le

T
im

e
co
ns
ta
nt

(i
n
ns
)
of

fa
st

sc
in
ti
lla

ti
on

co
m
po

ne
nt

Sc
in
tS
lo
w
T
im

eC
on

st
an

t
do

ub
le

T
im

e
co
ns
ta
nt

(i
n
ns
)
of

sl
ow

sc
in
ti
lla

ti
on

co
m
po

ne
nt

Sc
in
tB

ir
ks
C
on

st
an

t
do

ub
le

B
ir
ks

co
ns
ta
nt

fo
r
sc
in
ti
lla

ti
on

qu
en
ch
in
g

Sc
in
tY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
pe

r
M
eV

Sc
in
tY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y

Sc
in
tB

yP
ar
ti
cl
eT

yp
e

bo
ol

If
tr
ue
,e

ac
h
sp
ec
ifi
ed

pa
rt
ic
le

us
es

it
s
ow

n
sc
in
ti
lla

ti
on

yi
el
d
an

d
yi
el
d
ra
ti
o.

If
fa
ls
e,

us
e
th
e
gl
ob

al
yi
el
d
an

d
ra
ti
o
sp
ec
ifi
ed

by
Sc
in
tY

ie
ld
,S

ci
nt
Y
ie
ld
R
at
io

M
uo

nS
ci
nt
ill
at
io
nY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
fo
r
m
uo

ns
pe

r
M
eV

M
uo

nS
ci
nt
ill
at
io
nY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y
fo
r
m
uo

ns
P
ro
to
nS

ci
nt
ill
at
io
nY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
fo
r
pr
ot
on

s
pe

r
M
eV

P
ro
to
nS

ci
nt
ill
at
io
nY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y
fo
r
pr
ot
on

s
K
ao
nS

ci
nt
ill
at
io
nY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
fo
r
ka
on

s
pe

r
M
eV

K
ao
nS

ci
nt
ill
at
io
nY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y
fo
r
ka
on

s
E
le
ct
ro
nS

ci
nt
ill
at
io
nY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
fo
r
el
ec
tr
on

s
pe

r
M
eV

E
le
ct
ro
nS

ci
nt
ill
at
io
nY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y
fo
r
el
ec
tr
on

s
P
io
nS

ci
nt
ill
at
io
nY

ie
ld

do
ub

le
T
ot
al

(f
as
t
+

sl
ow

)
yi
el
d
of

sc
in
ti
lla

ti
on

ph
ot
on

s
fo
r
pi
on

s
pe

r
M
eV

P
io
nS

ci
nt
ill
at
io
nY

ie
ld
R
at
io

do
ub

le
R
at
io

of
fa
st

to
sl
ow

sc
in
ti
lla

ti
on

in
te
ns
it
y
fo
r
pi
on

s

T
ab

le
13
:
P
ar
am

et
er
s
re
le
va
nt

to
op

ti
ca
lp

hy
si
cs

in
LA

rP
ro
pe

rt
ie
s
se
rv
ic
e

22

Branch Type Meaning

Voxel Int_t Voxel ID for this entry
OpChannel Int_t Optical channel ID for this entry
Visibility Float_t The visibility of this voxel to this optical channel

Table 14: Branches of the PhotonLibraryData TTree, stored to disk

methods to look up and set values in the table, the photon library object has I/O methods which can be
used to convert the table to and from a flat TTree stored in an external root file. The storage method
outputs the library through the TFileService to the global file service output file for the current job.
The loading method opens the root file from a string specified location.

The TTree stored to file is in the top directory of the root file, and is named be named PhotonLi-
braryData. It contains one entry per voxel per channel, and the branches are as shown in table

6.2.2 The PhotonVisibilityService

The PhotonVisibilitySerivce can be called anywhere in LArSoft by using a service handle, as

art :: ServiceHandle < phot :: PhotonVisibilityService > pvs

If the PhotonVisibilityService is enabled in the services block of the job configuration, at the
beginning of the job it will create an instance of the PhotonLibrary object. This object will immediately
be filled with photon library data from the path specified by the “LibraryFile” parameter. The location
of the file should be specified relative to some directory in the $FW_SEARCH_PATH environment variable.
The default location for the photon library is in the directory PhotonPropagation/LibraryData/.

LArSoft modules can then interact with this PhotonLibrary through methods of the PhotonVisibil-
ityService. In particular, methods are implemented to allow the user to query the visibility per optical
detector at a particular voxel number or at a particular 3D point. The names of these methods are
self explanatory, so I refer the reader to the source code. These methods are called by the OpFastScin-
tillation process in LArG4 to determine how many detected photons should be given to each optical
detector for a given light production intensity.

As mentioned in section 2.3, the PhotonVisibilityService is also responsible for maintaing the global
voxelization scheme for the optical simulation. This can be accessed with the

If the LibraryBuildJob parameter is set to true, the visibility service will use the lightsource event
generator and sim photon counter modules to coordinate a library building job, a process which is
described in the next section. As such, the PhotonVisibilityService is a central pillar of the fast optical
simulation.

Some module require access to the PhotonVisibilityService for features such as the global voxel
scheme, but do not require access to the photon library. In jobs involving only such modules, job
startup times can be improved by setting the DoNotLoadLibrary parameter to true. This prohibits
any access to optical library data later in the job.

The full list of configurable parameters of the PhotonVisibilityService are listed below.

6.3 The Library Building Process
6.3.1 Configuring and Running a Library Build Job

The configuration script

EventGenerator/prodsingle_buildopticallibrary.fcl

23

Parameter Type Purpose

NX, NY, NZ int The number of voxels in the X, Y and Z directions for global vox scheme
XMin, XMax, YMin, YMax, ZMin, ZMax double Boundaries of the custom voxel region for global vox scheme

UseCryoBoundary bool Whether to use a custom region (0) or full cryostat (1)
LibraryFile bool Location of root file containing photon library data

LibraryBuildJob bool If set to true, LightSource and SimPhotonCounter set up for library build
DoNotLoadLibrary bool If true, skip library load from file at job startup

Table 15: Parameters of PhotonVisibilityService

Shows how to set up a library build job. The script has a few vital components. First, the
PhotonVisibilityService configured in library building mode

services.user.PhotonVisibilityService: @local::standard_photonvisibilityservice_buildlib

And the LightSource event generator, LArG4 with full optical simulation, and SimPhotonCounter
modules are present in the job sequence. Under these conditions, the PhotonVisibiliyService will
coordinate the production of photons voxel by voxel with the LightSource generator. These photons are
simulated, with all optical physics including reflection, rayleigh scattering and absorption accounted for,
by the LArG4 full optical simulation. Those photons reaching the optical detectors create sim::Photons
objects representing detected photons. The SimPhotonCounter counts the number of photons detected
at each optical detector.

With the PhotonVisibilityService configured in library building mode, the SimPhotonCounter pro-
duces an output TTree in the correct format for library building, containing the visibility fraction
(photons detected / photons produced) for each optical detector at each voxel, using the TFileService
output. This TTree, if spanning every voxel in the detector, is the complete photon library object for
the fast simulation. In general, each job in a library building batch will only simulate some subset of
the voxels in the detector. Then the output TFiles must be zipped together into a single library file.
Scripts which can do this are described in the next section.

6.3.2 Library building with the grid

The library building job which has been run for MicroBooNE required 220,000 hours of cpu time.
This is obviously a job for the grid, rather than a single machine. Scripts for organizing grid jobs are
present in the directory

PhotonPropagation/LibraryBuildTools

The file prodsingle_buildopticallibrary.fcl is the base fcl file used to configure the library
building job. The script OpticalLibraryBuild_grid.sh copies this file to the remote grid location
with the name thisjob.fcl, and modifies it by adding lines to the end. In particular, the job is configured
to run over a specified subset of voxels, and deposit the specified number of photons in each, with the
lines:

echo“physics.producers.generator.FirstVoxel : $FirstVoxel” >> thisjob.fcl
echo“physics.producers.generator.LastVoxel : $LastVoxel” >> thisjob.fcl
echo“physics.producers.generator.N : $NPhotonsPerVoxel” >> thisjob.fcl

If the submission is configured properly then each job in the batch runs over a different set of
voxels, such that ultimately all voxels are simulated once.

24

Figure 13: XProjection, YProjection and ZProjection for the MicroBooNE Optical library

The actual command used to submit this job to the grid is supplied for reference in the SubmitCommand.sh
file. DO NOT USE THIS SCRIPT BLINDLY. It is included in the repository as a helpful ref-
erence, but running it directly without modifying the relevant file paths may overwrite existing data,
or in the best case, attempt to write files to areas the user does not have permissions for.

After all grid jobs have completed, there will be a few thousand output directories copied back to
some specified location. The simple script CopyScript.sh accesses each of these directories and copies
the library output root files into one specified directory. Once this has been done, the CombineIntoLibrary.sh
script can be run to combine all the individual few-voxel files into one large library file containing data
for every voxel. This script runs the AssembleSingleFile.C root script, which opens each file in the
specified list (generated automatically by CombineIntoLibrary.sh) and copies the entries from the
TTrees therein into one large TTree, stored in a specified output location.

6.4 The PhotonLibraryAnalyzer Tool
If a photon library file is loaded by the PhotonVisibilityService, the analyzer module PhotonLibraryAnalyzer
can be used to produce visibility maps across the detector. This module only does work at the begin-
ning of the job rather than event-by-event, running through each voxel and querying the sensitivity at
each optical detector for that location.

The output is produced through the TFileService, and comprises a series of histograms. The XPro-
jection, YProjection and ZProjection histograms show the visibility summed for every optical detector
projected down one dimension. For example, the XProjection shows the total visibility summed for
every X at each YZ point. The projection histograms are shown for the MicroBooNE optical library
in figure 13. These histograms are useful in several ways - for example, at the time of running, there is
a small coordinate system bug in the geo::Geometry service of LArSoft - this is visible in the Y offset
of these projections, and will be fixed in the near future.

As well as producing projections, the PhotonLibraryAnalyser produces series of histograms showing
slices through the 3D volume. The slices can be made in X, Y, or Z, and with one slice per voxel in
that direction a complete 3D map of the library is represented. Figure 14 shows the X slices at the
wireplane, the detector center and the cathode plane, with the z axis (color) showing the total visibility
of each voxel summed over all optical detectors.

The PhotonLibraryAnalyzer module also produces XInvisibles, YInvisibles and ZInvisibles his-
tograms, which show the number of voxels which are invisible to all optical detectors in the library
projected in X,Y and Z. If the statistics of the library generation are high enough, these should not

25

Figure 14: projX histograms for the x slices at the wireplanes, in the center of the TPC and at the
cathode plane for MicroBooNE

exist except at legitimately invisible points in the detector (for example, behind the cathode plane or
outside the cryostat). Finally, the VisByN histogram shows how many of the optical detectors have a
record of the light from each voxel. If the library statistics were high enough to sample the far tails
of detectability for each optical detector, this histogram would have all events in bins at 30 (the total
number of optical detectors) and 0. In a library built with lower statistics, some voxels will not have
recorded visibility data for some optical detectors, and this histogram will not be so strongly peaked
at 0 and 30.

7 Digitization and Basic Reconstruction
The OpticalDetector package in LArSoft contains digitization modules to turn MCTruth detected
photons from the optical simulation into feasible optical detector signal pulses, and reconstruction
modules to extract reconstructed quantities from these pulses and make hypotheses about the spatial
origin of the light detected in an event. This package is under active development, and this section
describes what currently exists, and may be subject to significant change in the future. As such there
is less technical detail here than elsewhere in the note, but we include an overview for completeness.

7.1 Optical Digitization
7.1.1 The OpMCDigi digitization module

The OpMCDigi module loads the SimPhoton collection from the event and generates a digitized OpDet-
Pulse for each channel. The signal shape for each optical detector is given by a linear superposition
of waveforms, one starting at the arrival time of each detected photon. The single PE waveform is
obtained from the OpDigiProperties service. If the “QE” parameter is set to less than 1, some fraction
of all MC truth photons are discarded from the pulse at random.

After summing waveforms at the relevant photon times, the final pulse is rounded to an integer
valued ADC signal. The signal in each bin is allowed to fluctuate either to the value above or below
the true value, with a probability for each set such that the expectation value after many samplings
would be equal to the true value of the summed pulse.

26

Parameter Type Purpose

InputModule string The name of the module which produced SimPhotons - usually LArG4
QE double The fraction of photons which will create pulses in each optical detector
SaturationScale double The maximum pulse height in the ADC
Dark Rate double Rate in Hz of single PE dark noise

Table 16: Parameters of the OpMCDigi module

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

80	

100	

120	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	

Time	 (us)	

Figure 15: Pulse shape used for optical digitization, as supplied by the OpDigiProperties service

The pulse can be set to saturate at a particular ADC count (“SaturationScale”), which in the
MicroBooNE electronics we expect to occur at around 2000 ADC counts. Noise can be injected in the
form of single PE pulses at a specified dark noise rate, which will be randomly distributed over the
sampling interval and have a number drawn from a poisson distribution determined by the specified
noise rate and digitized frame length. The parameters of this module are listed in table 16

7.1.2 The OpDigiProperties Service

This service supplies parameters and waveform shape information to various optical digitization and
reconstruction modules. The service is configured with a start and end time for the data frame in
microseconds and a sampling rate in MHz. The number of samples per digitized opdet signal will then
be the product of the window size and the sampling rate.

A single PE pulse shape to use for digitization is provided in a text file. The pulse currently
used is extracted from real PMT readout electronics data for the MicroBooNE Bo PMT test stand,
and is shown in figure 15. This pulse can scaled by a constant (“PERescale”) when reading into the
OpDigiProperties service. For example, the pulse shown below represents a signal of height ~5PE, so
it is scaled by a factor of 0.2 in order to represent a true single PE pulse. The parameters supplied to
the OpDigiProperties service are listed in table 17.

Parameter Type Purpose

SampleFreq string ADC sampling frequency (MHz)
TimeBegin double Time of beginning of digitized frame (relative to MC t=0)
TimeEnd double Time of end of digitized frame (relative to MC t=0)
WaveformFile string Location of file providing single PE pulse shape
PERescale double Factor to scale waveform file by to obtain 1PE pulse

Table 17: Parameters of the OpDigiProperties service

27

Figure 16: OpDigiAna waveform output for an overlaid cosmic / neutrino event. Top: bipolar pulse
over full frame and zoomed into one peak. Bottom: unipolar pulse over full frame and zoomed into
the same peak.

7.1.3 The OpDigiAna analysis module

The OpDigiAna module reads the digitized waveforms from the event and stores them as histograms
through the TFileService. The only parameter required by OpDigiAna is the input module name,
which is used to find the OpDetPulse objects. The pulses are output in two formats : first, as a
bipolar pulse, which mirrors the actual pulse simulated and stored in the event. Second, as unipolar
pulse, which is the cumulative sum of the bipolar bins up to each time. Forming a unipolar pulse in
this way is utilized in the optical hit finding algorithm. It relies on the fact that the bipolar pulse has
a total integral of zero, and so the unipolar pulses for each photoelectron will return to the baseline
value. Since the bipolar pulses add linearly, so do the unipolar cumulative pulses.

An example waveform is shown in figure 16. This waveform was generated in an event with several
cosmics overlaid with a neutrino event. Each subevent has a distinct signal spike, and zooming in
reveals smaller scale structure.

7.2 The Hit Finder Reconstruction Module
7.2.1 The OpHitFinder module

The OpHitFinder module reads in digitized pulses from the event in the form of raw::OpDetPulse
objects. It first turns bipolar pulses into unipolar pulses by producing the cumulative pulse as a
function of bin time. If the cumulative pulse at a given time is less than a supplied zero suppression
threshold, it is assumed to be zero. This is to prevent instabilities from noise and rounding errors from
becoming magnified as the accumulated pulse is calculated over long times, in cases where the integral
of the bipolar pulses deviates from being exactly zero.

Once the unipolar pulse has been calculated, it is binned broadly into regions of a specified time,
usually 1− 2µs. If one such bin contains an isolated peak, such that the ratio of the bin content either
side to this bin content is less than a specified isolation fraction, this bin is used to see a hit. The

28

1.	 Invert	 pulse	 to	
unipolar	

2.	 Broad	 binning	 and	
find	 isolated	 hit	 seeds	

3.	 Walk	 from	 start	 of	
seed	 to	 find	 peak.	
Walk	 fixed	 >me	 past	
peak	 to	 collect	 late	
light.	

Figure 17: Cartoon of the optical hit finding process

coarse binning is performed twice, the second time with a half bin offset, to prevent missing pulses
which straddle a bin division.

Once a seed bin has been found, we walk along the original finely binned unipolar waveform from
the start of this bin to find the peak time. Walking along the pulse stops when we have gone one
broad bin width from the highest bin found so far. The peak therefore forms a type of “anchor point”
around which the pulse is integrated. The pulse therefore usually walks us into the next bin of the
broad histogram, which is by design in order to collect the pulse late light in the total area.

The area, peak time and maximum amplitude of the pulse are stored in an OpHit. The number of
PE in the pulse is calculated by dividing the area by a specified calibration constant, which represents
the area of 1PE as a unipolar pulse. If this is measured in a detector, it is important to invert the
pulse to unipolar with the method described before calculating the 1PE area. A cartoon showing this
process in action is shown in figure 17.

7.2.2 The OpLowIntensityHitFinder module

The OpLowIntensityHitFinder module is an alternative hit finder, developed to deal specifically with
low intensity pulses. The hit finding method finds seeds at peaks in the optical detector signal and
then fits gaussians to these pulses. After this first fit, a second fit is performed where the widths
and scales of all the individually determined gaussians are varied to account for overlaps. The hit
parameters are extracted from the final set of fitted, superposed gaussians. This module has not been
extensively tested with full light yield simulations, due to its much higher CPU time requirements for
long waveforms.

29

Parameter Type Description

InputModule string The module name which produced the digitized pulses
PEArea double The integrated area of a unipolar pulse

IsolationFrac double The maximum fractional size of the bins either side of a hit
SamplesPerBin int The coarse-graining width to bin signals into for hit finding
HitThreshold double The minimum number of PE required in a coarse bin to form a hit
ZeroSupThresh double The zero suppression threshold used when inverting a bipolar pulse (see text)

Table 18: Parameters supplied to the OpHitFinder module

7.2.3 The OpHitAna analyzer

This analyzer module produces histograms showing the time structure and magnitude (in number of
PE) of the OpHits found.

7.3 Flash Finding
7.3.1 The OpFlashFinder module

The purpose of the OpFlashFinder module is to associate OpHits across different PMTs into collections
of hits nearby in time which represent distinct optical subevents. The algorithm for doing so is described
in the following.

Of all the hits read from the event, the hit with the largest number of PE is selected. All hits
which are within a specified flash time width of this hit are collected into a subevent. The multiplicity
of hits in this subevent must be greater than a supplied multiplicity condition in order to proceed to
create a flash object.

Next, subevents which are near in time and have non-overlapping sets of optical detector channels
are merged. The average time of the final subevents is calculated and the number of photoelectrons
per optical detector is acquired. Using the known positions of the optical detectors, looked up from the
optical geometry, and the known number of PE per detector, the position of the centre-of-mass of the
light detected, and the geometrical width of the detected flash, is calculated in the YZ directions and
in the UVW directions. The central time of the flash is compared to a user specified beam window to
determine whether the flash occurred in time with a beam neutrino event. All the above information
is stored into a recob::OpFlash object.

7.3.2 The OpFlashAna analyzer

The OpFlashAna analyzer extracts data from the OpFlashes in an event and produces histograms.
These histograms include geometrical maps of the flash locations in YZ (the width and center being
extracted from the stored flash object, and the flash drawn as a gaussian in these two dimensions), the
flash time vs intensity, and the number of PE per flash per optical detector, amongst other plots.

8 Conclusion
In this note I have described the code which has been implemented in LArSoft for both full and
fast optical simulation chains, as well as helper modules and services which facilitate optical physics
simulations and analyses.

The code base for the simulation routines (largely in LArG4) is likely fairly stable, and this note
should remain relevant and useful into the future. Optical digitization and reconstruction routines
are in a state of flux and are likely to change significantly once real data begins to be processed from
MicroBooNE.

30

Figure 18: The timing hits found for a particular optical detector in an overlaid neutrino + cosmics
event. Left: The digitized pulse from OpDigiAna, Right: the reconstructed hit time structure from
OpHitAna. Height of spikes gives #PE. Both plots are cut off vertically to show detail. Note that due
to the very fine binning on this scale it is difficult to see the area of the peaks in the digitized signal,
although large pulses have visible large initial spikes from prompt light.

Where possible I will attempt to keep this note up to date with future developments in LArSoft
optical physics functionality, so check back on the LArSoft svn page often.

References
[1] S. Amoruso et al. Study of electron recombination in liquid argon with the ICARUS TPC.

Nucl.Instrum.Meth., A523:275–286, 2004.

[2] M. Antonello et al. Analysis of liquid argon scintillation light signals with the icarus t600 detector.
Technical Report ICARUS-TM/06-03, 2006.

[3] A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles. Measurement of refractive indices
of neon, argon, krypton and xenon in the 253.7 to 140.4 nm wavelength range. dispersion relations
and estimated oscillator strengths of the resonance lines. Journal of Quantitative Spectroscopy
and Radiative Transfer, 25(5):395 – 402, 1981.

[4] Flavio Cavanna. Private Communication.

[5] P Cennini, J.P Revol, C Rubbia, F Sergiampietri, A Bueno, M Campanelli, P Goudsmit, A Rub-
bia, L Periale, S Suzuki, C Chen, Y Chen, K He, X Huang, Z Li, F Lu, J Ma, G Xu, Z Xu,

31

Figure 19: The YZ positions of flashes corresponding to three different subevents in the same overlaid
cosmic and neutrino event

Figure 20: Number of photoelectrons counted in each optical channel for two flashes

32

C Zhang, Q Zhang, S Zheng, F Cavanna, D Mazza, G.Piano Mortari, S Petrera, C Rossi, G Man-
nocchi, P Picchi, F Arneodo, I.De Mitri, O Palamara, D Cavalli, A Ferrari, P Sala, A.Borio
di Tigliole, A Cesana, M Terrani, C Zavattari, S Baibussinov, A Bettini, C Carpanese, S Centro,
D Favaretto, D Pascoli, A Pepato, F Pietropaolo, S Ventura, P Benetti, E Calligarich, S Campo,
S Coco, R Dolfini, B Ghedi, A.Gigli Berzolari, F Mauri, L Mazzone, C Montanari, A Piazzoli,
A Rappoldi, G.L Raselli, D Rebuzzi, M Rossella, D Scannicchio, P Torre, C Vignoli, D Cline,
S Otwinowski, H Wang, and J Woo. Detection of scintillation light in coincidence with ionizing
tracks in a liquid argon time projection chamber. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 432(23):240
– 248, 1999.

[6] Tadayoshi Doke, Akira Hitachi, Jun Kikuchi, Kimiaki Masuda, Hiroyuki Okada, and Eido Shiba-
mura. Absolute scintillation yields in liquid argon and xenon for various particles. Japanese
Journal of Applied Physics, 41(Part 1, No. 3A):1538–1545, 2002.

[7] E. Morikawa et al. Argon, krypton, and xenon excimer luminescence: From the dilute gas to the
condensed phase. J. Chem. Phys, 91:1469, 1989.

[8] A. C. Sinnock and B. L. Smith. Refractive indices of the condensed inert gases. Phys. Rev.,
181:1297–1307, May 1969.

[9] R. K. Teague and C. J. Pings. Refractive index and the lorentz–lorenz function for gaseous and
liquid argon, including a study of the coexistence curve near the critical state. The Journal of
Chemical Physics, 48(11):4973–4984, 1968.

[10] Craig Thorn. Catalogue of liquid argon properties. MicroBooNE docdb 412-v4, Oct 09.

33

